

Pig meat production Carbon Footprint

Fabrizio BOERI Life Cycle Engineering-Italy boeri@studiolce.it

YEMCO Spring Conference - Bologna 30 - 31 March 2012

www.studiolce.it

Services

Life Cycle Assessment

LOC offers this experience to make environmental assessments of a product through the application of LCA methodology and the correct interpretation and application of the LCA results

Eco Design

Communication

Environmental Consultancy

LCE develops consuming services

LATEST NEWS

EPD ON WASA HUSMAN NOW AVAILABLE

05/10/2011

LCE supported Barilla in the realization of the Environmental Product Declaration of Wasa Husman. For more information see www.environdec.com

EPD ON CRACKER NON SALATI NOW AVAILABLE

24/08/2011

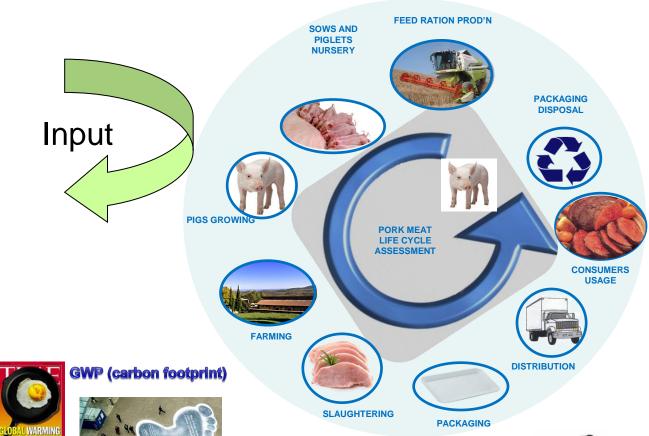
www.environdec.com

EPD ON ARMONIE FETTE BISCOTTATE DORATE NOW **AVAILABLE**

24/08/2011 www.environdec.com

LCA manual

Featured projects



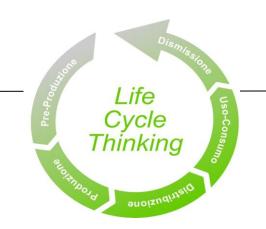
LCA and EPD of a vaccine against boar taint

Pig meat production Carbon Footprint

WHAT is a Life Cycle Assesment (LCA)

www.studiolce.it

Gross Energy Requirement



Additional information

WHY doing a Life Cycle Assesment (LCA)

www.studiolce.it

comparisons on scientifically generated data

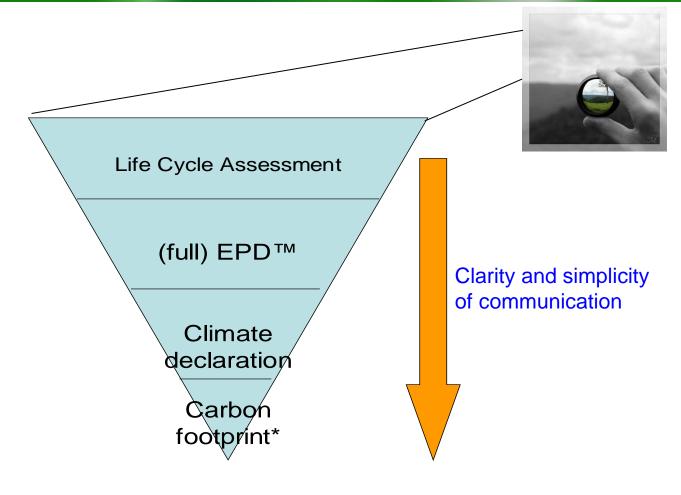
R&D

To identify specific issues

COMMUNICATION

Providing detailed, reliable and robust information to support the environmental communication

The "Six Sins of Greenwashing" A Study of Environmental Claims in North American Consumer Markets


SIMULATION & ECO-DESIGN

To support changes into the system for improvement

From LCA to Carbon Footprint

www.studiolce.it

| CARBON FOOTPRINT | CEMISSION expressed as CO₂-equivalents | CO₃ | CPC code 34920 | CARBON FOOTPRINT | CEMISSION expressed as CO₂-equivalents | CARBON FOOTPRINT | CEMISSION | CEMISSION

For more information – www.environdec.com

LCA and EPD of

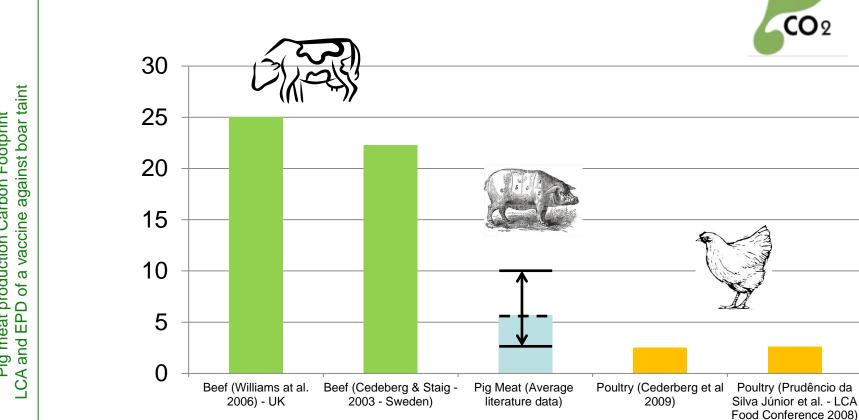
Carbon Footprint and Pig Meat Production

www.studiolce.it

The Carbon Footprint represents the total amount of greenhouse gas (GHG) emitted either directly or indirectly by human activity throughout overall life-cycle. It is expressed in equivalent tons of CO2

PAS 2050:2008

ISO 14064:2006


Reference	Country	kg CO ₂ e/kg Weight (carcass)
Basset-Mens & van der Werf (2005)	France	2,3
Cederberg & Flysjo (2004)	Sweden	4,4
RIRDC (2010)	Australia	3,1-5,5
Cederberg m.fl. (2009b)	Sweden	5,2
UAASC (2010)	USA	7-10,2*
Williams et al. (2006)	UK	5,6- 6,4

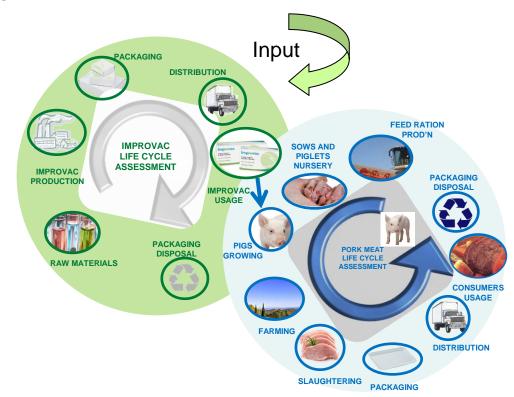
[*boneless meat, including packaging, retail and consumption-cooking]

Carbon Footprint and Pig Meat Production

www.studiolce.it

Pig meat production Carbon Footprint

The Specific LCA Project of Pfizer



Produce reliable data about the environmental burden of an average farm that uses and that doesn't use the immunological product for boar taint reduction

Develop a specific study applied to pig breeding with particular regard to male pig;

Analyze the use phase of an immunological product for boar taint reduction

Understand and quantify any possible environmental benefit of using it

ISO Type III Environmental labelling Quantified environmental life cycle ISO 14025 product information (not selective)

THE SYSTEM

Figure 1. Scheme of the considered system boundaries (including upstream, core and downstream main processes). SYSTEM BOUNDARIES Slaughterhouse **DOWNSTREAM UPSTREAM PROCESSES CORE PROCESS PROCESSES** 000 DEAE Dextran production Meat prod'n **Facility** Improvac Conjugate prod'n Kalamazoo (US), Louvain la Neuve Pig breeding Preservative prod'n and rearing (Belgium) and Melbourne (Australia) plants Improvac use phase (2 doses) and Improvac Cap and bottle prod'n packaging end of Packaging production life management Packaging process Auxiliary materials Improvac transport to the farms

FUNCTIONAL UNIT DEFINITION

www.studiolce.it

VACCINE PRODUCTION:

UPSTREAM & CORE

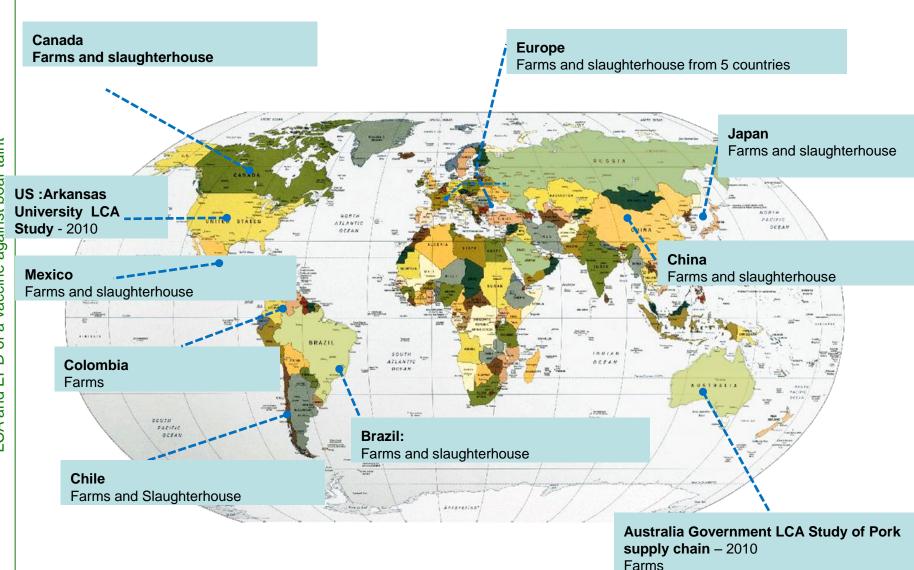
USE PHASE (FARM) LEVEL

DOWNSTREAM

END OF LIFE (SLAUGHTERHOUSE)

DOWNSTREAM

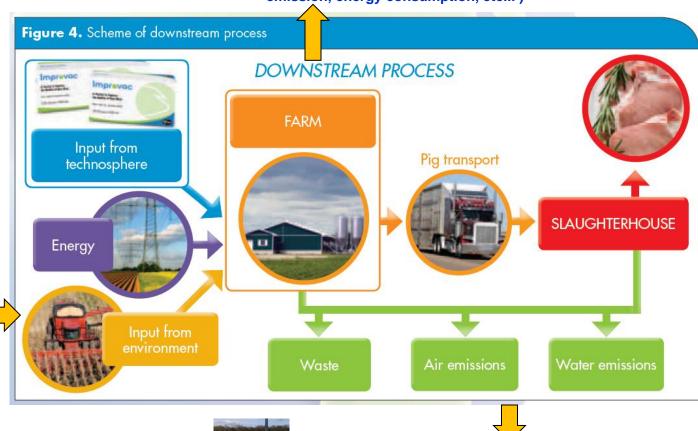
2 doses of immunological product


2 doses used per male pig

It is the pig ready for slaughter (live-weight) and the unit mass of final product (meat)

Pig meat production Carbon Footprint LCA and EPD of a vaccine against boar taint

Data collected globally


www.studiolce.it

Pig meat production Carbon Footprint LCA and EPD of a vaccine against boar taint

Farm Model: vaccine use phase

Farm management (Sow management, Pig housing emission, energy consumption, etc...)

I Ration given to pigs
I (Typology,
composition, quantity)

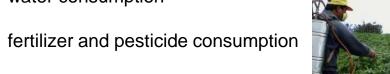
Crop and feed Production

Slurry management- final destination

Air and water emissions calculated on the basis of different slurry management system applied in the farms (IPCC Guidelines).

Animal Feed Production Data

Crop and feed Production


Data are related to crop activities from specific regional data

crop yield

water consumption

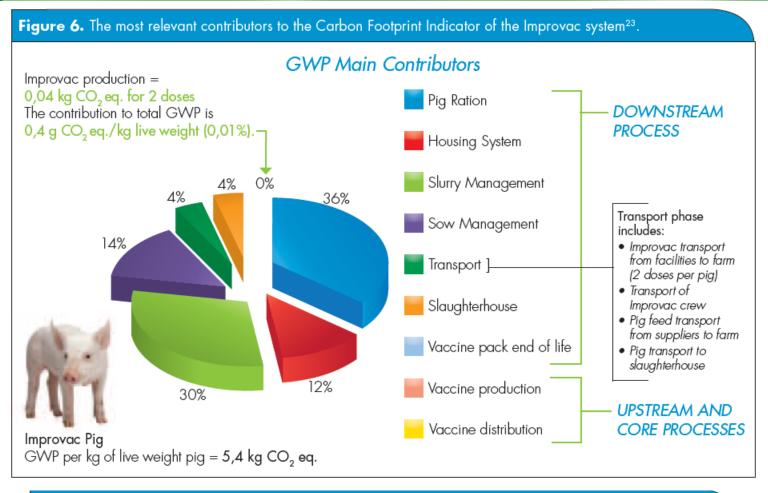
land operation

These parameters are specific for each country and each feed component

Slurry Management

- Pit storage
- Solid storage
- Daily spread
- Liquid storage without crust cover
- Liquid storage with crust cover
- Dry lot
- Anaerobic lagoon

- Slurry management alternative practices are **specific** for each country.
- Data related to slurry composition are specific for each country


of

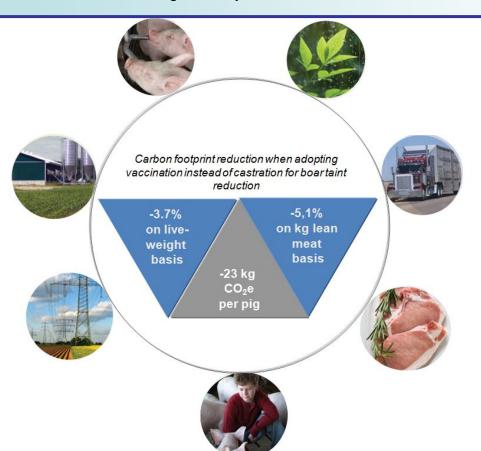
LCA and EPD

RESULTS: CARBON FOOTPRINTING

www.studiolce.it

Table 6. Carbon Footprint for the three functional units considered in the LCA for Improvac (rounded data).						
IMPACT INDICATORS		1 kg of pig live weight	1 kg of pig carcass after dressing	1 kg of lean meat		
Global Warming Potential (GWP) [Carbon Footprint]	kg CO ₂ equiv.	5,4	7,0	12,8		

Barrows vs Vaccinated Boars


www.studiolce.it

CARBON FOOTPRINT

Barrows = 5,57 kg CO2 eq

Boars vaccinated for boar taint = 5,36 kg CO2 eq

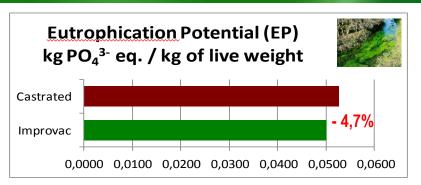
LCA and EPD of a vaccine against boar taint

Pig meat production Carbon Footprint

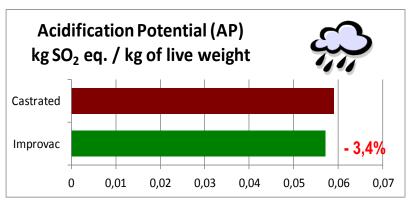
Costs

Saving

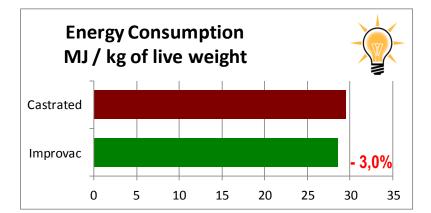
Meat carbon footprint reduction initiatives at farm level and related costs and savings.


Action Vaccine use Renewable energy Slurry anaerobic digestion Purchase CER CER

Certified emission reduction CER \$/CO2saved No Yes


The vaccine use scenario is based on a balance between cost of vaccine and savings associated with non-physical castration and reduction of feed

Investment (plant)


Additional Results

Eutrophication Potential (EP) index measure the release of sulphur, nitrogen, phosphorous and degradable organic substances into the atmosphere and water courses; it may cause nutrient enrichment (eutrophication), which in turn may result in algal blooms and decrease the water quality,

Acidification Potential (AP) index measure the phenomenon by which atmospheric rainfall has a lower pH (due to the emissions of SO2, NOx, and NH3). This may cause damage to forests and crops, as well as to water ecosystems and objects in general

Energy associated to the functional unit of product or production system considered, referred to the gross or cumulative totals when all operations are traced back to the extraction of raw materials from the earth.

Pig meat production Carbon Footprint CA and EPD of a vaccine against boar taint

The Pfizer team:

Jim ALLISON

Paulo MORAES

Joe ROBINSON

Paloma SUAREZ

The LCE team:

Gian Luca BALDO

Fabrizio BOERI

Paola BORLA

Stefano ROSSI

EPD reviewer: Göran Brohammer,

goran.brohammer@se.bureauveritas.com

Thank you for your attention

Fabrizio BOERI Life Cycle Engineering-Italy

boeri@studiolce.it